

International Journal of Current Research and Academic Review

ISSN: 2347-3215 Volume 4 Number 8 (August-2016) pp. 52-63 Journal home page: <u>http://www.ijcrar.com</u> doi: <u>http://dx.doi.org/10.20546/ijcrar.2016.408.005</u>

Bilateral Cochlear Implantation: Auditory Outcome Depending on the Time Between Two Operations

Iglika P. Stancheva*, Sonya Varbanova, Spiridon Todorov, Orlin Stoyanov and Diana Popova

Department of Otorhinolaryngology, Medical University of Sofia, Bulgaria

*Corresponding author

KEYWORDS

ABSTRACT

Cochlear Implant (CI), bilateral cochlear implantation, auditory outcome, EARS (Evaluation of Auditory Responses to Speech), time between two cochlear implantations.

The aim of this study was to compare the auditory outcome between two groups of patients with bilateral cochlear implantation depending on the time of placement of the second cochlear implant - less and more than one year after the first one. 14 patients with bilateral cochlear implantation were enrolled and they were divided into two groups depending on the time of placement of the second cochlear implant - less and more than one year after the first one. All participants have been evaluated with LiP test (Listening Progress Profile), MTP tests 3, 6, 12 (Monosyllabic-Trochee-Polysyllabic test), MSW test (Monosyllabic Word test), MSW-Phonemes test (Monosyllabic Word-Phonemes test), SLS test (Spoken Language Skill test), SLS-Words test (Spoken Language Skill-Words test), GASP test (Glendonald Auditory Screening Procedure). Follow-up period was at least 36 months. Mean score results of both groups were compared for the major EARS (Evaluation of Auditory Responses to Speech) battery tests. Statistical analysis demonstrated that children's scores improved significantly over time in both groups. There was statistical significant difference between mean scores of both groups only for the 1st month of MTP3 test (mean_{group1}=2,57; mean_{groupII}=9,00; p=0,006). In all other tests (LiP, MTP6, MTP12, MSW, MSW-Phonemes, SLS, SLS-Words, GASP) we obtained comparable results in the observed groups. This is the first study that evaluates the auditory outcome after bilateral cochlear implantation in Bulgarian patients depending on the time between two operations – less and more than one year after the first one. The results have shown that both groups made progress and achieved substantial improvement, but we did not find any statistically significant difference in the auditory outcome between these two groups. Additional studies in larger group of patients with bilateral cochlear implants and long-term follow-up period would confirm or rejected this.

Introduction

Hearing loss is the most frequent sensory disorder in humans. Cochlear implantation is the only way to help patients with severe to profound sensorineural hearing loss. In the past, implantation was performed only in one ear, despite the fact that binaural hearing is superior to unilateral, especially in noisy conditions. (Kronenberg *et al.*, 2010) The primary effects ascribed to binaural listening are: the head shadow effect; the binaural summation effect; and the binaural squelch effect, which produce benefits ranging from improved speech recognition in noise to the ability to localize direction of sound (Papsin and Gordon, 2008).

Cochlear implantation may be performed simultaneously or sequentially (the time interval between the two operations ranging from months to years). The "sensitive period" of time between hearing loss and implantation and between the two implantations, when performed sequentially, significantly influences the results. (Kronenberg et al., 2010)

Ramsden *et al.*, show that sequential implantation with long delays between ears limited the amount of bilateral benefit sequentially implanted subjects might receive (Ramsden *et al.*, 2005). A closer look at subjects who received the second CI relatively late after the first CI is an important aspect for counseling parents as well as professionals of special education and for choosing candidates for a second CI (Vischer *et al.*, 2011).

The first cochlear implantation in Bulgaria was made in 1999. Until now in our clinic were operated 380 patients. Twenty of them were implanted two-sided.

In this study we presented our experience with auditory outcome in bilateral cochlear implantation. Fourteen children with bilateral cochlear implantation were observed for 36 months period. They were divided into two groups depending on the time between operations of the two ears – less and more than one year.

Materials and Methods

This study was conducted at the Department Of Otorhinolaryngology, University Hospital "Queen Jovanna – ISUL" Sofia, Bulgaria.

Participants

Fourteen children aged between 11 months and 17 years were recipients of two cochlear implants (Cochlear or MED-EL). All of the children were diagnosed in our clinic by using electrophysiological measurement methods before implantation. They were divided into two groups depending on the time between two operations: group I less than 1 year (n=7) and group II over 1 year patients participated (n=7). All in individually tailored intensive audiological rehabilitation programs after receiving their implants. The follow up period was three years.

Main outcome measures

In order to achieve audiological assessment of the two groups we used a full battery of tests – Evaluation of Auditory Responses to Speech (EARS):

Listening Progress Profile (LiP) is a profile devised to monitor changes in the early auditory performance of young implanted children. The profile covers a range of abilities from first response to environmental sounds, through discrimination of environmental sounds and discrimination of voice, to identification of own names (Nikolopoulos, *et al.*, 2000). Monosyllabic-Trochee-Polysyllabic test (MTP) is a closed-set test used to assess the ability of an individual in recognizing words with different syllabic patterns out of groups of 3, 6 or 12 words.

Monosyllabic Words test (MSW). The aim of this test is to demonstrate the ability to identify familiar monosyllabic words. Results on this test are comparable internationally.

Monosyllabic Words – Phonemes test (MSW – Phonemes) measures the ability to correctly pronounce phonemes in monosyllabic words.

Spoken Language Skill test (SLS) measures the ability to repeat a sentence. Spoken Language Skill – Words test (SLS – Words) evaluates the recreation of the actual words in a sentence.

Glendonald Auditory Screening Procedure (GASP) demonstrate the ability to recognize simple questions. Results on this test are comparable internationally with results of other cochlear implant children.

These tests were performed in a quiet room under normal ambient noise conditions. The set of this tests evaluates the following hearing habits: detection – the ability to record the presence or absence of sound; discrimination – the ability to determine the difference or similarity between two beeps (image); identification – the ability to choose/detect any sound signal from other previously known beeps; imitation – the ability to replicate or mimic the spoken sounds, including speech; comprehension – the ability to understand spoken language.

Statistical methods

For statistical analysis was used SPSS (Statistical Package for the Social Sciences).

We compared mean scores results on both groups for 36-months follow up-period using independent two-sample Student's ttest. Two-tailed distribution was used.

Results and discussion

All of children have prelingual deafness. 64% of patients are female and 36% are male. In both groups the implantation age of the first CI is from 11 months to 4 years. In only one patient from group II the first CI placed at the age of was 13. $SD_{groupI}=0,787)$ $(\text{mean}_{\text{group}I}=1,43;$ (mean_{groupII}= 3,71; SD_{groupII}=4,152). There is significant statistically difference no between the mean age of implantation of the first cochlear implant between two observed groups (p=0,064).

Time between first and second CI in group I was less than one year and only one child received two cochlear implants simultaneously. (mean_{groupI}=0,57; $SD_{groupI}=0,535$). The mean time between two operations in group II was 3,14 years. (SD=0,690).

The present study compared mean score results of both groups for the major EARS battery tests. For equality of means was used t-test. Results revealed that both groups made progress and substantial improvement was noticed in early auditory performance in all the patients at the end of the first year (figure 1, table1).

Analysis of MTP3, MTP6, MTP12 data revealed a significant improvement of word recognition in both groups. There is statistical significant difference between mean scores of both groups only for the 1st month of MTP3 test(mean_{group1}=2,57; mean_{group11}=9,00; p=0,006)(figure 2, figure 3, figure 4) (table 2).

In all open-set tests (MSW, MSW – Phonemes, SLS, SLS – Words, GASP) we

obtained comparable results inthe both groups. We have not found statistically significant differences between mean scores of both observed groups (figure 5, figure 6, figure 7, figure 8, figure 9) (table 3).

There are many factors that influence results after bilateral cochlear implantation etiology of hearing loss, onset of deafness, interval between onset of deafness and cochlear implantation, appropriate case selection, surgery, age at first implantation, time between two operations, post - implant rehabilitation. The time between the two operations are not reflected our results. Bilateral cochlear implantation offers advantages to all children. No difference in auditory performance (LiP, MTP3, MTP6, MTP12, MSW, MSW - Phonemes, SLS, SLS - Words, GASP tests throughout the 36-months follow-up period) was shown whether the second CI was placed - less or more than one year after the first one(except for the 1st month mean scores of the MTP3 test). Similar results were reported from Dunn et al., (Dunn, 2012)One reason for this finding might be due to the small number of

subjects tested in this study. In addition, we did not find trends in our data that indicate a negative impact on performance due to longer durations between surgeries. Prior to determine the exact time of the second operations necessary to analyze the results of a large number of patients. On the other hands, research teams of Tyler and Laske have concluded that long delays between both operations may not give the full benefits of bilateral implants. (Tyler et al., 2007)(Laske et al., 2009) Scherf et al., reported that there were advantages from the second CI even in children who received the second implant at a considerable distance from the first (> 6 years of age): however, these results appear to be slower than those achieved by children receiving the second implant after a short delay (< 6 years). (Scherf et al., 2009) Anderson et al., suggest that cochlear-implanted children develop open-set speech recognition soon after implantation, and these skills develop over a long period of time, highlighting the need for continued therapy to maximize listening and learning. (Anderson et al., 2004)

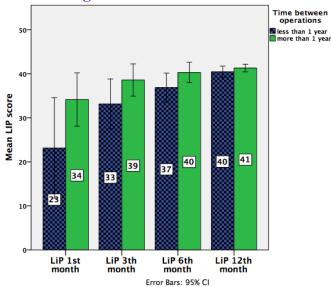

Test	Time between two	Ν	Mean	Std. Deviation	Sig. (2-tailed)
	operations				
LiP 1st month	less than1 year	7	23.14	12.335	0.059
	more than 1 year	7	34.14	6.543	
LiP 3th month	less than1 year	7	33.14	6.122	0.072
	more than 1 year	7	38.57	3.952	
LiP 6th month	less than1 year	7	36.86	3.532	0.058
	more than 1 year	7	40.29	2.498	
LiP 12th month	less than1 year	7	40.43	1.397	0.205
	more than 1 year	7	41.29	.951	

Table.1 Results from the LiP test for bot	n groups (LiP –	Listening Progress Profile)
---	-----------------	-----------------------------

Table.2 Results from the MTP3, MTP6, MTP12 tests for both groups(MTP – Monosyllabic-Trochee-Polysyllabic test)

	Time between two	Ν	Mean	Std. Deviation	Sig. (2-tailed)
	operations				
MTP3 1st month	less than1 year	7	2.57	3.359	0.006
	more than 1 year	7	9.00	3.830	
MTP3 3th month	less than1 year	7	6.29	4.855	0.055
	more than 1 year	7	10.71	1.704	
MTP3 6th month	less than1 year	7	9.00	3.786	0.128
MIF5 our monur	more than 1 year	7	11.57	1.134	
MTP3 12th month	less than1 year	7	10.43	2.699	0.259
MTP5 12th month	more than 1 year	7	11.71	.488	
MTD6 6th month	less than1 year	7	12.14	6.517	0.387
MTP6 6th month	more than 1 year	7	14.71	3.861	
MTDC 19th month	less than1 year	7	15.14	5.014	0.950
MTP6 12th month	more than 1 year	7	15.29	3.147	
MTP6 18th month	less than1 year	7	17.00	2.236	0.721
MTP0 18th month	more than 1 year	7	16.57	2.149	
MTP6 24th month	less than1 year	7	18.00	.000	0.356
MTP6 24th month	more than 1 year	7	17.86	.378	
MTD12 12th month	less than1 year	7	14.43	9.607	0.419
MTP12 12th month	more than 1 year	7	18.14	6.744	
MTP12 18th month	less than1 year	7	21.14	4.598	0.733
	more than 1 year	7	21.86	2.854	
MTD12 24th month	less than1 year	7	23.43	1.512	1.000
MTP12 24th month	more than 1 year	7	23.43	1.134	
MTD12 26th month	less than1 year	7	24.00	.000a	1.000
MTP12 36th month	more than 1 year	7	24.00	.000a	

Fig.1 Mean scores for the LiP test

Table.3 Results from the MSW, MSW – Phonemes, SLS, SLS – Words, GASP tests for both groups. (MSW –Monosyllabic Words test; MSW Phonemes – Monosyllabic Words Phonemes test; SLS – Spoken Language Skill test; SLS Words – Spoken Language Skill Words test; GASP –Glendonald Auditory Screening Procedure)

Test	Time between two operations	N	Mean	Std. Deviation	Sig. (2-tailed)
MSW 6th month	less than1 year	7	2.43	2.637	0.410
	more than 1 year	7	3.71	2.984	
MSW 12th month	less than1 year	7	4.29	2.498	0.712
	more than 1 year	7	4.86	3.132	
MSW 18th month	less than 1 year	7	6.43	1.618	0.918
	more than 1 year	7	6.57	3.207	
	less than1 year	7	8.29	1.799	0.649
MSW 24th month	more than 1 year	7	7.71	2.690	
	less than 1 year	7	9.29	1.113	0.374
MSW 36th month	more than 1 year	7	8.57	1.718	
MSW-Phonemes 6th	less than 1 year	7	16.29	5.090	0.242
month	more than 1 year	7	19.86	5.757	
MSW-Phonemes 12th	less than1 year	7	23.00	3.317	0.650
month	more than 1 year	7	22.00	4.619	
MSW-Phonemes 18th	less than1 year	7	26.29	1.604	0.928
month	more than 1 year	7	26.14	3.761	
MSW-Phonemes 24th	less than1 year	7	28.43	1.718	0.355
month	more than 1 year	7	27.29	2.628	
MSW-Phonemes 36th	less than1 year	7	29.14	1.215	0.626
month	more than 1 year	7	28.86	.900	
	less than1 year	7	1.71	3.402	0.718
SLS 12th month	more than 1 year	7	2.43	3.823	
	less than1 year	7	2.29	3.592	0.380
SLS 18th month	more than 1 year	7	4.14	4.018	
	less than1 year	7	3.71	3.352	0.727
SLS 24th month	more than 1 year	7	4.43	4.077	
	less than1 year	7	5.71	3.352	0.688
SLS 36th month	more than 1 year	7	4.86	4.375	
CLC Wands 19th manth	less than1 year	7	14.14	14.017	0.750
SLS-Words 12th month	more than 1 year	7	16.86	16.985	
SLS-Words 18th month	less than 1 year	7	15.57	14.797	0.462
	more than 1 year	7	22.00	16.803	
SLS-Words 24th month	less than1 year	7	22.29	11.056	0.727
	more than 1 year	7	25.86	14.147	
	less than1 year	7	26.29	10.095	0.688
SLS-Words 36th month	more than 1 year	7	30.43	11.356	
GASP 6th month	less than1 year	7	2.43	2.878	0.636

	more than 1 year	7	3.29	3.684	
	less than1 year	7	3.71	3.352	0.680
GASP 12th month	more than 1 year	7	4.57	4.198	
GASP 18th month	less than1 year	7	5.43	3.101	0.828
GASP 18th month	more than 1 year	7	5.86	4.059	
GASP 24th month	less than1 year	7	6.71	1.799	0.580
	more than 1 year	7	7.57	3.552	
GASP 36th month	less than1 year	7	8.29	1.604	1.000
	more than 1 year	7	8.29	2.984	

Fig.2 Mean scores for the MTP3 test

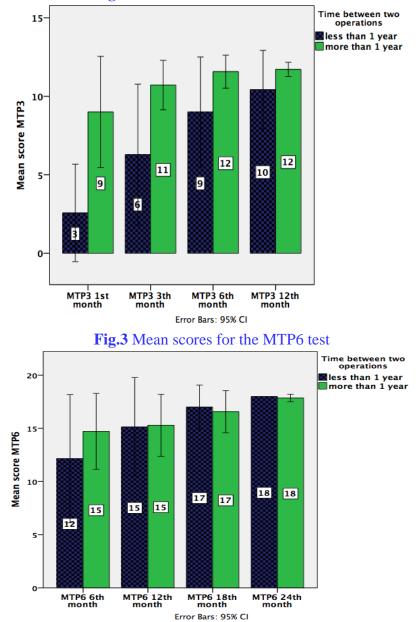
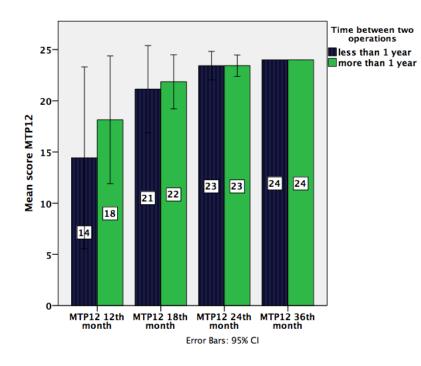
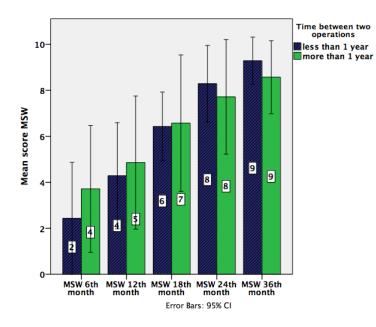




Fig.4 Mean scores for the MTP12 test

Time between two operations 30 less than 1 year more than 1 year Mean score MSW/Phonemes 25-20-15-29 29 28 27 26 26 23 22 20 10-16 5-0-MSW/ MSW/ MSW/ MSW/ MSW/ Phonemes Phonemes Phonemes Phonemes 6th month 12th month 18th month 24th month 36th month Error Bars: 95% CI

Fig.6 Mean scores for the MSW – Phonemes test

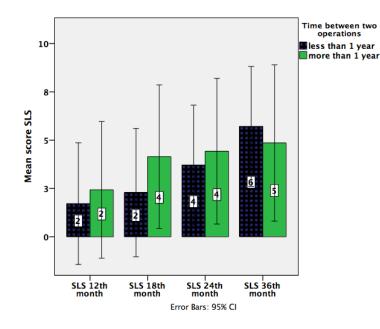


Fig.8 Mean scores for the SLS – Words test

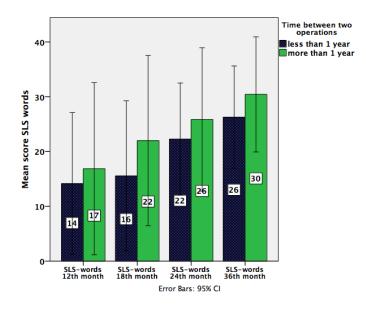
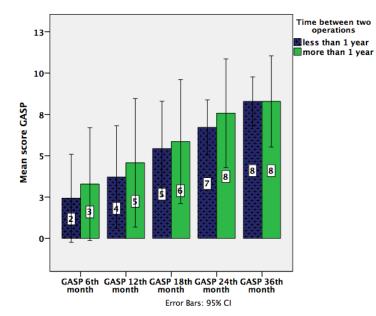



Fig.9 Mean scores for the GASP test

Age at second implantation did not have an influence on all outcomes. From the results of Sparreboom *et al.*, can be concluded that the advantages of bilateral hearing occur after sequential bilateral implantation and that age at second implantation does not influence the amount of bilateral advantage. Furthermore, they show that longer periods of bilateral implant use lead to greater

bilateral advantages. (Sparreboom *et al.*, 2011) Van Deun report better outcomes with bilateral CI in children who received the first implant very early (< 2 years of age) and in those with a small time interval between the two interventions. (Van Deun *et al.*, 2009) Peters *et al.* also report more benefit in children who receive second CI earlier. Even in children who receive CI

within 5 years, second implant reaches same performance as first (after 1 year). (Peters *et al.*, 2007)As a result of observation of 58 children with different ages of the first and second CI for 36-month period, Gordon and Papsin report benefit from second CI superior in children with shorter duration of bilateral deafness and inferior interval between the two implantations – not statistically significant. (Gordon & Papsin, 2009)

Sain's et al., EARS test results show that older children a started at higher performance level, but their younger peers caught up within 24 months of device use. (Sainz et al., 2003) Zeitler et al., revealed significant improvement in the second implanted ear and in the bilateral condition, despite time between implantations or length of deafness; however, age of first - side implantation was a contributing factor to second ear outcome in the pediatric population. Sequential bilateral implantation significantly better speech leads to understanding. On average, patients improved, despite length of deafness, time between implants, or age at implantation (Zeitler et al., 2008).

Laske *et al.* reported that although there was improvement with a second cochlear implant even after a long implantation interval, short intervals lead to better results. (Laske *et al.*, 2009)Although most authors believe that early placement of the second cochlear implant has more benefits for the patients a systematic review of the literature by Smulders *et al.*, shows that a second implant can be beneficial even after a substantial interval between sequential implantations (Smulders *et al.*, 2011).

Conclusion

This is the first study that evaluates the auditory outcome after bilateral cochlear

implantation in Bulgarian patients depending on the time between two operations – less and more than one year. The results have shown that both groups made progress and achieved substantial improvement, but we did not find any statistically significant difference in the auditory outcome between these two groups. Additional studies in larger group of patients with bilateral cochlear implants and longterm follow-up period would confirm or rejected this.

References

- Anderson, I., Weichbold, V. & D'Haese, P. 2004. Three-year follow-up of children with open-set speech recognition who use the MED-EL cochlear implant system. *Cochlear Implants Int*, 5(2), pp.45–57.
- Van Deun, L. *et al.*, 2009. Earlier intervention leads to better sound localization in children with bilateral cochlear implants. *Audiol. Neurotol.*, 15(1), pp.7–17.
- Dunn, Tyler, G., 2012. Sequential Bilateral Cochlear Implantation: Speech Perception and Localization Pre- and Post-Second Cochlear Implantation. *Am. J. Audiol.*, 21(2), pp.181–189.
- Gordon, K.A. and Papsin, B.C., 2009. Benefits of short interimplant delays in children receiving bilateral cochlear implants. *Otology & neurotology: official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otol. Neurotol.*, 30(3): pp.319–331.
- Kronenberg, J. et al., 2010. [Bilateral cochlear implantation]. Harefuah, 149(6), pp.362–364,403. Available at: http://www.ncbi.nlm.nih.gov/pubmed/2 0941925.
- Laske, R.D. *et al.*, 2009. Subjective and objective results after bilateral cochlear implantation in adults. *Otology & neurotology : official publication of the*

American Otological Society, American Neurotology Society [and] European Academy of Otol. Neurotol., 30(3), pp.313–318.

- Nikolopoulos, T.P., Wells, P. & Archbold, S.M., 2000. Using Listening Progress Profile (LIP) to assess early functional auditory performance in young implanted children. *Deafness & Education Int.*, 2(3), pp.142–151.
- Papsin, B.C. & Gordon, K.A., 2008. Bilateral cochlear implants should be the standard for children with bilateral sensorineural deafness. *Current opinion in otolaryngology & head and neck surgery*, 16(1), pp.69–74.
- Peters, B.R. et al., 2007. Importance of age and postimplantation experience on speech perception measures in children with sequential bilateral cochlear implants. Otology & neurotology: official publication of the American Otological Society, American Neurotol. Society [and] European Academy of Otol. Neurotol., 28, pp.649–657.
- Ramsden, R. et al., 2005. Evaluation of bilaterally implanted adult subjects with the nucleus 24 cochlear implant system. Otology & neurotology: official publication of the American Otological Society, American Neurotol. Society [and] European Academy of Otol. Neurotol., 26(5), pp.988–998.
- Sainz, M. *et al.*, 2003. Assessment of auditory skills in 140 cochlear implant children using the EARS protocol. *ORL*, 65(2), pp.91–6.

- Scherf, F.W.A.C. *et al.*, 2009. Functional outcome of sequential bilateral cochlear implantation in young children: 36 months postoperative results. *Int. J. Pediatric Otorhinolaryngol.*, 73(5), pp.723–730.
- Smulders, Y.E. *et al.*, 2011. What is the effect of time between sequential cochlear implantations on hearing in adults and children? A systematic review of the literature. *Laryngoscope*, 121(9), pp.1942–1949.
- Sparreboom, M., Snik, A.F.M. & Mylanus, E. a M., 2011. Sequential bilateral cochlear implantation in children: development of the primary auditory abilities of bilateral stimulation. *Audiol. neurootol.*, 16(4), pp.203–213.
- Tyler, R.S. *et al.*, 2007. Speech perception and localization with adults with bilateral sequential cochlear implants. *Ear and hearing*, 28(2 Suppl), p.86S–90S.
- Vischer M, Senn P, Kompis M, Häusler R, C.M., 2011. Predictive factors for the performance of the second cochlear implant in sequentially bilateral implanted children, adolescent and adults. *Maney Online*, 12(s1), pp.s127– s129.
- Zeitler, Daniel M., Kessler, Megan A., Terushkin, Vitaly, Roland, J. Thomas Jr., Svirsky, Mario A., Lalwani, Anil K., Waltzman, S.B., 2008. Speech Perception Benefits of Sequential Bilateral Cochlear Implantation in Children and Adults: A Retrospective Analysis. *Otol. neurotol.*, pp.314–325.

How to cite this article:

Iglika P. Stancheva, Sonya Varbanova, Spiridon Todorov, Orlin Stoyanov and Diana Popova. 2016. Bilateral Cochlear Implantation: Auditory Outcome Depending on the Time Between Two Operations. *Int.J.Curr.Res.Aca.Rev*.4(8): 52-63. doi: http://dx.doi.org/10.20546/ijcrar.2016.408.005